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R-matrix method for quantum transport simulations in discrete systems
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We present a discrete analog of the R-matrix method for atomistic quantum transport calculations. The
method enables all the observables of interest to be found recursively and the computer time scales linearly
with the number of atoms regardless of the device geometry, distribution of impurities, or interface roughness.
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I. INTRODUCTION

Semiconductor process technologies are making rapid
progress in terms of device scale and performance. Nanofab-
rication is being achieved as a result of continual technologi-
cal innovations, leading to the development of a variety of
novel devices such as double gate transistors,! carbon
nanotubes,” and gate-all-around (GAA) metal oxide semi-
conductor field effect transistors (MOSFETs).> Experimental
studies of Ge/Si nanowire heterostructures and GAA twin
silicon nanowire have shown excellent gate control, high
drain current, and reduced sensitivity to temperature. As the
size of a CMOS shrinks, a device cannot longer be described
as a continuous system with smooth boundaries and inter-
faces. Atomic-scale variation in the dopant distribution and
the interface roughness must be taken into account, necessi-
tating statistical quantum simulations of nanoscale MOS-
FETs. In order to turn theoretical studies into a practical
computer design tool, improvements in efficiency of the the-
oretical methods are still needed. A variety of methods, such
as the contact block reduction (CBR) algorithm,*> scattering
matrix approach,%’ and recursive Green’s function method®
have been developed to calculate ballistic transport through
quantum devices. However, even in the ballistic regime, the
large size of the Hamiltonian makes computations in three-
dimensional nanostructures very challenging.’

For continuous models, we have shown recently that the
electronic state of the device can be effectively calculated in
a local basis representation.!” The local basis is introduced
by splitting the device into a set of small elements and solv-
ing an independent low-dimensional spectral problem in
each element. Constructing the device from its elements is
equivalent to calculating the normal derivatives of the
Green’s function (or the wave function) at their boundaries
which play a role of unknown parameters in the local basis
representation. The continuity at the internal boundaries pro-
vides necessary consistency conditions which are conve-
niently expressed in terms of the R matrix.!""!> The latter
serves as an auxiliary quantity which can be propagated
through the device such that the physical solutions in the
device elements are constructed recursively without huge op-
erations. Unlike the recursive Green’s function method, the
propagated R matrix characterizes a close device without
leads and the propagation scheme can be adjusted for arbi-
trary device geometry. Apart from its numerical efficiency,
the method provides a suitable framework for studying ion-
ized impurity scattering and screening effects since the sin-
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gularities in the charge distribution can be handled analyti-
cally in appropriate local coordinate representation.
Calculations of quantum transport through dopant atoms in
semiconductor nanowire have been reported recently.!?

In the continuous models, the R matrix is originally de-
fined via a linear relation between the scattering wave func-
tion and its normal derivative at the contacts with leads. An
alternative definition arises naturally in scope of the local
basis representation: the R matrix for any device element is
merely a boundary projection of the Green’s function for
appropriately chosen close system.'? The later definition can
be easily adopted to discrete models and the R-matrix theory
is formulated in much the same way taking the device ele-
ments as arbitrary clusters of atoms. In practice, using indi-
vidual atoms as the device elements gives the best computer
performance in the ballistic regime and offers a natural way
to incorporate random impurity distribution and/or surface
roughness.

II. TRANSPORT IN TIGHT-BINDING MODEL
A. Green’s functions and the R matrix

We consider the tight-binding Hamiltonian in space of
atomic orthogonal pseudo-orbitals

H H
Hm[:( DD DL>, (1)
H,p, Hp

where Hjp, is the Hamiltonian of the device, H;; represents
the Hamiltonian of all the leads, and Hj; =Hj, is the cou-
pling between the device and the leads. The interatomic cou-
pling in H, is assumed to be localized, i.e., each atom in the
structure interacts with a finite number of neighbors. In par-
ticular, the coupling term Hj; is nonzero only for a small
number of atoms in the device (D) and leads (L) near the
contacts. We express this condition in the form Hp,
=PH,,, P', where P=P? (P’ =P'?) is the projector to the cor-
responding atomic orbitals in the device (leads). In the bal-
listic regime, all the physical observables can be obtained
from the retarded Green’s function of the device

Gpp(e) = (e = Hi + i0)pp = [e - Hpp = X&), (2)
where the self-energy
3%(e) = Hp (e —Hy, +i0)"'Hpp (3)

represents the effects of the leads. The Green’s function (&
—H,, +i0)~! is calculated routinely from the Bloch scattering
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solutions in the leads.'* Since the coupling part of the Hamil-
tonian is localized, the rank of 3%=P3RP depends only on
the number of atoms at the contacts which is much smaller
then in the whole device. As a result, in the representation
where Hpp is diagonal, the calculation of the device Green’s
function G} ,(e) can be reduced to a few matrix operations
of small size, which is the essence of the CBR method.’

The same results most easily follow from the Dyson equa-
tion

Gpple) =Gy(e)(1 +Hp, Gyp), (4)

where Go(s)=€_lTnn is the Green’s function for the close
device with the Hamiltonian Hj,. The retarded Green’s
function is a particular solution of Eq. (4) which behaves as
outgoing/decaying Bloch waves in all the leads. We follow
the common approach and consider the leads of nanowire
geometry with the slice index s=0,1,2,... along the wire
and the zeroth slice taken as the contact. We introduce the
matrix Y, of all the outgoing/decaying solutions in all the
leads.'"*! In practice, x, is block diagonal, the blocks for
separate leads are calculated independently. It is also as-
sumed that the Hamiltonian couples only the nearest slices.
Then the projector P (P’) corresponds to the atomic orbitals
in the zeroth (first) slice and the retarded Green’s function
satisfies the condition that PG5, and P'GY, are linear com-
binations of X, and x; with the same expansion coefficients.
We thus obtain

P,GIED:XIXGIPGgDv (5)

which after inserting into Eq. (4) gives the ordinary Dyson
equation for the retarded Green’s function'®

G"(e) = Gy(e)(1 + 2RGF) (6)
with the contact self-energy
3F = PHp x1 X' P- (7)

Hereafter we consider only the device area and omit the in-
dices D in the Green’s function. In the leads with equivalent
slices x1=x0Z and 2R=PHDLX0Z)(61P, where Z is the ma-
trix of the corresponding Bloch factors.'® This is generally
not the case in realistic structures and Eq. (7) should be used.

In the ballistic regime, calculation of the entire G®(g) can
be avoided. In particular, the current between leads i and j is
expressed in terms of the transmission function'®

T”(S) =Tr FiGRFjGR+, (8)
where
r=i(Xf - %) 9)

and Ef is the part of the self-energy for the ith lead. As
follows from Eq. (7), the Green’s function G¥ in Eq. (8) can
be replaced by PG®P and Eq. (6) gives

PGRP=R(1-3fR)!, (10)

where we introduced the R matrix R as a boundary projec-
tion of the Green’s function for the close device
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FIG. 1. (Color online) The device growth: the new cluster Cis
obtained by adding atom a to the previous cluster C. The red (dark
gray) circles represent the atoms in the cluster boundary. The light
gray circles are for other atoms in the clusters. The projector P, in
Eq. (12) extracts the atomic orbitals at the boundary atoms c. After
adding the new atom, Pz in Eq. (20) removes the orbitals of cUa,
which are not in the boundary of the new cluster C (one ¢ atom in
this case).

R=PGP. (11)

Rather than calculate the Green’s function G, we will di-
rectly construct the R matrix and avoid any huge operations
depending on the size of the total device.

B. Device growth and the R-matrix propagation

Let C be an arbitrary cluster of atoms in the device area
and let B=D-C be the rest of the device. We define the
cluster boundary ¢ as a group of all the atoms in C with
Hcp# 0 and introduce the projector operators P.,Pc,Pg,...
onto atomic orbitals of ¢,C,B,.... Similar to Eq. (11), we
can introduce the close system with the Hamiltonian H¢c
=P-H,, P and define the corresponding R matrix

1
R.=P.—71P, (12)
€ _HCC

which is simply a boundary block of the Green’s function for
the isolated cluster C (i.e., without coupling Hp). Figure 1
schematically shows a part of cluster C and its boundary
atoms c. The R matrix R.. gives a linear relation between
arbitrary wave function at these atoms W ,= P W(e) and the
exterior of the cluster W= Pz W (&) (empty circles in Fig. 1),

V. =R, HV,. (13)

We can now increase the cluster by adding an arbitrary atom
a € B (see Fig. 1),

C—C=C+a,
B—B=B-a, (14)

and write for the wave function at cU a,

\I,C = Rcchqua + R('L'Ht'éqrg? (15)
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\I,(l = RaaHuc\I,c + RaaHaE\Ijé’ (16)

where Raazﬁ is the Green’s function for the isolated
atom with the Hamiltonian H,,,. Performing necessary matrix
operation, we arrive at

P, R. R, \(H;¥;
=\ _ _ I (17)
\I}a R ac Ra a HaB\I,B

where

ﬁL‘C = R(‘C + Rccha(laa - RaaHacRccha)_lRaaHacRcc’

R..=R. H,(1,- R, H,RH.,) R,

Rac = (laa - RaaHaCRccha)_lRaaHacRcc’

lPiaa = ( 1 aa ~ RaaHacRccha)_lRaa . ( 1 8)

Similar to Eq. (13), ﬁ(cut,)(cut,) in the above equation is a

projection of the Green’s function for close cluster C to the
boundary of C and to the new atom a. Since any boundary

atom of the new cluster C is within this group,
PE(PL'+Pa)=(PL'+Pu)PE=PF (19)

we obtain the R matrix for the grown cluster C by simply
removing redundant orbitals &¢,

REF= PEﬁ(cUa)(cUa)PE' (20)

Equations (18) and (20) give the general recipe of the
atomistic R-matrix propagation. We can now start with the
initial R matrix R, for arbitrary isolated atom and construct
the device by adding all other atoms one by one. Note that
Eq. (18) preserves the hermicity of the R matrix and involves
only the coupling H,, with the last atom. In particular, the
size of the inversion operation in Eq. (18) is just the number
of the atomic orbitals N, at a. Thus, calculating the R ma-
trix at one energy point requires ~N;N> ,Np, operations in
total, where Ny, is the number of atoms in the device and N,
is a typical number of atoms at cluster boundaries. The latter
depends on the consecutive order of atoms in the device
growth. In practice, one can always minimize the boundary
and keep N,, to be on the order of the number of atoms at the
contacts.

C. Example: R-matrix propagation in Si 7 junction

As an illustration, we calculate the transmission function
in silicon T junction [Fig. 2(a)] in scope of the sp>s* tight-
binding model.!” Surface states of the device are eliminated
by the method of Ref. 18. In order to test the numerical
accuracy, we first compare the R-matrix propagation with the
direct diagonalization of the close system Hamiltonian in the
device with short ~0.5 nm straight sections (1024 atoms in
total). We have confirmed at least 11 significant digits of
accuracy in all the elements of the final R matrix. Figure 3
presents the transmission functions T,(g),T5(e) for the en-
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FIG. 2. (Color online) 7 junction and GAA MOSFET used in
the simulations. Si-wire cross section: small black dots represent
outer hydrogen sites.

ergies within the valence band of the leads. For comparison
we show on the same picture the transmission function T(e)
in the [100] ideal wire of the same cross section. In these
calculations the length of the straight sections of the T junc-
tion varied up to 10 nm with 7872 atoms in total. The trans-
mission functions are found to be independent on the length
with accuracy better than ten significant digits in the whole
energy interval. The calculations were repeated for the de-
vice with a vacancy in the central area [see Fig. 2(a)] and
similar accuracy has been found. Since a single step of the
R-matrix propagation does not involve any large computer
operation, there are no memory limitations on the device
size.

III. CARRIER DENSITY AND SELF-CONSISTENT
CALCULATION OF QUANTUM TRANSPORT

We proceed with calculating the carrier charge'®
. de R Rt
g,= =+ 2(for spin)e>, Z—fi(s)Tra[G rG*], (21)
i W

where i runs over all the leads, the sign and the Fermi factors
f; depend on the carrier type, and Tr, is taken over atomic

— nanowire
—-—T-junction
64 1 L e T-junction with vacancy |

T(E)

FIG. 3. (Color online) The transmission functions 7, and T3 of
the T junction in Fig. 2(a) with and without a vacancy in the central
region of the device. For comparison, the transmission function 7
of the ideal [100] nanowire is also shown.
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orbitals at atom a. Introducing the open-channel eigenfunc-
tions

Fi|l'1/> = AiV|iV>, (22)

we rewrite Eq. (21) in the form
de . .
Go= *2e2 | file) W)W (iv),  (23)

where the scattering wave function
W(iv) = GRPliv)VA,, (24)

can be calculated at all the atoms recursively.

To see this, we again consider cluster C obtained by add-
ing atom a to the previous cluster C. According to Eq. (17),

any wave function at a is related to the exterior of C by
v, =095 (25)

where
®tl§ = ﬁaché + ﬁaaHaé' (26)

Note that only atoms b € B with Hz; # 0 actually contribute
to Eq. (25). The small coupling matrix @, of size ~N,N>,,
can be stored in the course of the R-matrix propagation.
Thus, for known Wj the wave function at the previously
added atom W, is calculated trivially. Subtracting atom a

gives the previous cluster C. Since any atom b e B with

H_, # 0 is within bUa we can repeat the same operation for
the last atom in C which was added right before a. In this
way, any wave function can be successively calculated at all
the atoms in the reverse order which requires only N,,Nirb
operations at each atom. The initial conditions for the back-
ward propagation are specified at the contacts. For the wave

function Eq. (24) we obtain from Eq. (10)
P (iv) =R(1 - SER)"![in)/A,, (27)

with the R matrix R computed previously.

As an illustration, we perform self-consistent ballistic
transport calculations in the p-Si GAA MOSFET [Fig. 2(b)]
at T=300 K in the sp*s* tight-binding model with the same
lattice orientation and the wire cross section as in the previ-
ous example. Other parameters are: eg=11.9, 65102=3.8,
dopant concentration in source/drain region 2 X 10" cm™,
and applied bias Vgp=0.1 V. Figure 4 presents an example
of calculated -V characteristics. The bottleneck of the calcu-
lations is the R-matrix propagation which in the present case
(7040 Si atoms in total) takes ~10 s for each energy point
on 3.2 GHz workstation. The computational time for the car-
rier density is negligible. The method clearly has no limita-
tions to the device geometry and lattice orientation. As an
extra test, we compute the drain current in 180 GAA MOS-
FETs with Si-surface roughness using the Gaussian model'”
with the correlation length 2 nm and the amplitude of one
atomic layer. The distribution of /1, (where I, is the current
in the ideal MOSFET) for V;=—0.22 V is shown in the inset
of Fig. 4.
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FIG. 4. (Color online) I-V characteristics of GAA MOSFET in
Fig. 2(b). The inset shows the statistics of the current I at Vg=
—0.22 V in 180 devices with silicon surface roughness.

Going beyond the ballistic approximation would require
calculation of the whole Green’s function. It is worth to note
in this connection that the R-matrix propagation also gives
enough information for recursive solution of the Dyson
equation, Eq. (6). Figure 5 shows schematically one step of
such calculations. Numeration of rows and columns in the
device Green’s function in this figure corresponds to the con-
secutive order of atoms in the device growth. For arbitrary
cluster C and known P3GRP, the calculation of PcGRPj is
analogous to the wave function. In particular, one obtains
P,GRPj for the last atom a in C [Fig. 5(a)]. When going to
the previous cluster C, the only missing part of PzGRPy is
the diagonal term G® =P ,G*P, [Fig. 5(b)] which is calcu-
lated trivially from the Dyson equation with the bare Green’s
function s—;ﬂea’

_ T
GR =R, +0,G. (28)

The nondiagonal block P-G*P, [Fig. 5(c)] is now treated as
the wave function W, which can be found by the backward
propagation Eq. (25) since its value W= P,GRP, outside

¢ B ¢ B C B
—— ——a— —

R

\aB 7 Iy

v

R R

GI;E Gaa GBB

(a) (b) ©

FIG. 5. Recursive integration of the Dyson equation. The calcu-
lated blocks of the Green’s function are shown dark. (a) The non-
diagonal block Gfé is a part of G[ég calculated from Ggé before-
hand. (b) The diagonal block G¥, for the atom a is calculated by
Eq. (28). (c) The nondiagonal block Gléa (and therefore ch) is
calculated by the backward propagation Eq. (25).
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the cluster C is known. Thus, the backward propagation of
the full Green’s function only requires the R-matrix compo-

nent for the last atom ﬁaa to be stored in addition to ® ,;. The
initial condition for the backward propagation is given by the
Green’s function at the contacts Eq. (10). Similar scheme is
applicable to the Hamiltonians with local corrections due to
inelastic phonon scattering in the Born approximation.”’ As a
test, we have computed the full retarded Green’s function in
the GAA MOSFET in Fig. 2(b) at zero bias. We have directly
checked each component in the matrix identity GX(e
—Hpp)=1 away from the contacts and confirmed at least
nine digits of accuracy. Since solving the Dyson equation is
an extension of the wave-function calculations, this test
brings extra confidence that our scheme for the ballistic re-
gime is reliable.

IV. SUMMARY

In this paper we present the R-matrix method for atomis-
tic quantum device simulations. Similar to the CBR scheme,
the method utilizes the fact that the current carrying states in
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the open device can be found in terms of the Green’s func-
tion of the corresponding close system. However, instead of
dealing with the huge device Hamiltonian, we treat the de-
vice as a growing cluster of atoms which is reminiscent of
the recursive Green’s function method. The propagated quan-
tity in our scheme is the R matrix defined as a boundary part
of the Green’s function in the close system. The device R
matrix is related to the electric current through the contacts
with leads and it can be calculated recursively in devices of
arbitrary geometry. Such a propagation scheme is very
stable, accurate, and it does not involve any huge operations.
It is further shown that the R-matrix propagation simulta-
neously provides extra data which enables the Schrodinger
and/or Dyson equations to be integrated in a straightforward
way. The numerical examples demonstrate high numerical
performance regardless of random impurities and the inter-
face roughness.
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